Seja bem-vindo(a). Hoje é
►| CEM| A²C | P & D| MATEMÁTICA| AUTORES| CONTATO| JOGOS| *

80

►Vai encarar o ENEM este ano? Inicie os estudos fazendo as provas das edições anteriores. Acesse-as aqui.

►Que tal fazer agora um simulado on-line para o ENEM? Acesse-o aqui (utilize o Chrome preferencialmente).

OBMEP 2017 ... Vamos relembrar a história de 4 jovens que passaram pela OBMEP ? Veja o documentário aqui.

►Conhece o vestibulinho das ETEC's(Escolas Técnicas Estaduais-SP)? Acesse as provas anteriores, cursos e período de inscrição. Mais informações acesse aqui.

►Conheça o SISU - Sistema de Seleção Unificada para o ensino superior / SISUTEC - Sistema de Seleção para a Educação profissional tecnológica do MEC (Ministério da Educação) e saiba como aproveitar a nota do ENEM para ingresso em cursos superiores e técnicos de instituições públicas.

►Conhece o PASUSP? Um importante programa de Avaliação da USP destinado a alunos do 2º e 3º ano do EM da rede pública paulista.


domingo, 26 de julho de 2009

A origem dos números irracionais

A origem histórica da necessidade de criação dos números irracionais está intimamente ligada com fatos de natureza geométrica e de natureza aritmética. Os de natureza geométrica podem ser ilustrados com o problema da medida da diagonal do quadrado quando a comparamos com o seu lado. Este problema geométrico arrasta outro de natureza aritmética, que consiste na impossibilidade de encontrar números conhecidos - racionais - para raízes quadradas de outros números, como por exemplo, raiz quadrada de 2. Estes problemas já eram conhecidos da Escola Pitagórica (séc.V a.c.), que considerava os irracionais heréticos. A Ciência grega consegue um aprofundamento de toda a teoria dos números racionais, por via geométrica - "Os Elementos de Euclides" - mas não avançou, por razões essencialmente filosóficas, no campo do conceito de número. Para os gregos, toda a figura geométrica era formada por um número finito de pontos, sendo estes concebidos como minúsculos corpúsculos - "as mónadas" - todos iguais entre si; daí resultava que, ao medir um comprimento de n mónadas com outro de m, essa medida seria sempre representada por uma razão entre dois inteiros n/m (número racional); tal comprimento incluía-se, então na categoria dos comensuráveis. Ao encontrar os irracionais, aos quais não conseguem dar forma de fração, os matemáticos gregos são levados a conceber grandezas incomensuráveis. A reta onde se marcavam todos os racionais era, para eles, perfeitamente contínua; admitir os irracionais era imaginá-la cheia de "buracos". É no séc. XVII, com a criação da Geometria Analítica (Fermat e Descartes), que se estabelece a simbiose do geométrico com o algébrico, favorecendo o tratamento aritmético do comensurável e do incomensurável. Newton (1642-1727) define pela primeira vez "número", tanto racional como irracional.

Nenhum comentário:

Postar um comentário

►ATENÇÃO - Leia a política para comentários na página de contato.

Observação: somente um membro deste blog pode postar um comentário.

▼ Acesse | Entenda o que é... ★

?

Um movimento que pretende abrir portas importantes para o crescimento do Brasil e dos brasileiros.

▼ Reflita | Frases e Pensamentos ★

▬▬▬▬▬▬▬▬▬▬ ✽ ▬▬▬▬▬▬▬▬▬▬

""

▬▬▬▬▬▬▬▬▬▬ ✽ ▬▬▬▬▬▬▬▬▬▬