Seja bem-vindo(a). Hoje é
►| CEM| A²C | P & D| MATEMÁTICA| AUTORES| CONTATO| JOGOS|

quarta-feira, 4 de novembro de 2009

Para medir comprimentos: O metro

A palavra metro tem origem no grego métron, que significa "o que mede". O sistema métrico surgiu por volta do ano de 1790. Antes disso, cada povo usava um sistema de unidades diferente, o que, naturalmente, causava a maior confusão. Por exemplo: o mesmo comprimento era medido em um lugar usando-se jardas e em outro com o uso de palmos. O resultado disso tornava praticamente impossível a comunicação entre os povos. Para solucionar esse problema, reformadores franceses formaram uma comissão de cinco matemáticos para que elaborassem um sistema padronizado. Essa comissão decidiu que a unidade de medida de comprimento se chamaria metro, e que corresponderia a décima milionésima parte da distância do equador terrestre ao pólo norte, medida ao longo de um meridiano. Más a medida da distância do equador ao pólo não era nada prática, tanto que ao efetuarem os cálculos os matemáticos acabaram cometendo um erro. Então em 1875 uma comissão internacional de cientistas foi convidada pelo governo francês para que reconsiderassem a unidade do Sistema Métrico, e dessa vez foi construída uma barra de uma liga de platina com irídio, com duas marcas, cuja distância define o comprimento do metro, e para evitar a influência da temperatura, esta barra é mantida a zero grau centígrado, num museu na Suíça. Os cientistas não pararam por aí, no decorrer do tempo foram sendo propostas novas definições para o metro. A última, e que passou a vigorar em 1983, é baseada na velocidade com que a luz se propaga no vácuo, ou seja, atualmente, associamos o comprimento de 1 metro a fração da distância percorrida pela luz, no vácuo em um segundo.

Um comentário:

  1. Oiii Professor, lembra de mim??
    Tuminha do ceu olhinho cá na frente. hauhauha

    A Paola do grande 3ºA

    Beijos

    ResponderExcluir

►ATENÇÃO - Leia a política para comentários na página de contato.

Observação: somente um membro deste blog pode postar um comentário.

▼ Reflita | Frases e Pensamentos ★

▬▬▬▬▬▬▬▬▬▬ ✽ ▬▬▬▬▬▬▬▬▬▬

""

▬▬▬▬▬▬▬▬▬▬ ✽ ▬▬▬▬▬▬▬▬▬▬
Este blogue está vinculado ao Portal do Professor* como uma contribuição e experiência pedagógica diferenciada no ensino de Matemática.

▼ Mosaico | Link's ★

Álgebra e GeometriaBNCCBases Matemáticas - UFABCCálculo com MapleCálculo I - UFF Cálculo(UnivespTV)Centro MatemáticoColetânea MatemáticaConteúdos DigitaisCourseraCPU-UFJFCurrículo +Clube de MatemáticaEducação BaseadaEMEM(UFSCar)E-CálculoMathematical EtudesGeogebra SPGregos e TroianosHorário de VerãoHistória da MatemáticaIMOInterdisciplinaridadeIsto é MatemáticaLaifiMalba TahanLD-Matemática-UFSCMatematecaMatemática-PT Mathway Matemática-FGVMatemática em Toda Parte IIMat/EAD(UFMG)MathematikosMestrado IFSP-SPMestrado USP-SPMídias Digitais-UFRGSMídias na EducaçãoMPEM-USPMoranNiuAlephNTEM (Lante-UFF)Paulo FreirePoliedros(moldes)Poliedros-IFPorvirProficiênciaProfmatProjeto PólyaProf. Jorge Nuno SilvaProf. NicolauProf. Nilson J. MachadoProf. Jacir VenturiProf. Walter TadeuProf. Luiz FreitasProfessor DigitalTIC na MatemáticaREARevista OIMRPM-Revista do Professor de MatemáticaRevista Gazeta de MatemáticaSBEMSBMSobrevivência em CálculoUnesco no Brasil Um livroUsuários do ExcelUnivespVeducaWebcalcWebeduc-MECZéfiroZKWolfram MathWorld

▼ Postagens mais visitadas ★

*O Portal da Matemática OBMEP oferece, gratuitamente, a todos os estudantes do país materiais relacionados à grade curricular do 6º ano do Ensino Fundamental ao 3º ano do Ensino Médio. Complemente e aprofunde seus estudos com videoaulas, exercícios resolvidos, caderno de exercícios, material teórico e aplicativos iterativos. Aproveite!!