Seja bem-vindo(a). Hoje é
►| CEM| A²C | P & D| MATEMÁTICA| AUTORES| CONTATO| JOGOS|

sábado, 30 de maio de 2015

O teorema de Euclides e a Wikipédia


A democratização do conhecimento pela internet é algo indiscutivelmente necessária, admirável, magnífica, etc. São inúmeras as iniciativas e possibilidades, me surpreendo muito ainda. É claro que ao certificarmos uma informação ou conhecimento, é preciso antes consultar e comparar diversas fontes e uma delas, eventualmente, pode ser a Wikipédia. Num dia destes, estava a rever um teorema bastante importante na teoria dos números, o Teorema de Euclides, e como professor de Matemática, fui visitar primeiro um velho livrinho* que tenho guardado em meu acervo e lá, observar como é apresentado o tal. O meu olhar naturalmente estava influenciado pela clareza, pela didática, etc., ou seja, como o assunto é exposto. Procurei ainda em mais um ou dois livros e não satisfeito, fui em seguida ao Google observar outras referências e surpreendentemente calho na... Wikipédia! O tal teorema estava ali, didaticamente acessível, melhor apresentado e comprovado do que no meu surrado livrinho. Não resisti e transcrevo-o a seguir.


Considerando L, uma lista finita qualquer de números primos:
L = { p1, p2, p3, ... , pn
Pode-se mostrar que existem números primos que não estão nessa lista. 

Veja como:
Sendo P o produto de todos os números primos na lista:

P = p1 × p2 × p3 × ... × pn  e  q = P + 1

Então, q pode ser primo ou não:

Se q é primo então há pelo menos um número primo a mais que não está listado.

• Se q não é primo, então algum fator primo p divide q. Esse fator p não está na nossa lista L. Se estivesse, ele dividiria P (pois P é o produto de todos os números na lista); mas como sabemos, p divide P + 1 = q. Então, para não deixar resto, p teria que dividir a diferença entre os dois números, que é (P + 1) − P ou seja, 1. Mas não existe número primo que divida 1, assim haveria uma contradição, logo, p não pode estar na lista. Isso significa que pelo menos mais um número primo existe além dos que estão na lista.

Isso nos prova que para qualquer lista finita de números primos, há um número primo que não está na lista. Portanto, existem infinitos números primos.

Depois do exposto, convenhamos, só nos resta dizer: É urgente a democratização do conhecimento (e do acesso livre a internet, principalmente nas escolas).

Veja os 30 primeiros números primos : 

Nenhum comentário:

Postar um comentário

►ATENÇÃO - Leia a política para comentários na página de contato.

Observação: somente um membro deste blog pode postar um comentário.

▼ Reflita | Frases e Pensamentos ★

▬▬▬▬▬▬▬▬▬▬ ✽ ▬▬▬▬▬▬▬▬▬▬

""

▬▬▬▬▬▬▬▬▬▬ ✽ ▬▬▬▬▬▬▬▬▬▬
Este blogue está vinculado ao Portal do Professor* como uma contribuição e experiência pedagógica diferenciada no ensino de Matemática.

▼ Mosaico | Link's ★

Álgebra e GeometriaBNCCBases Matemáticas - UFABCCálculo com MapleCálculo I - UFF Cálculo(UnivespTV)Centro MatemáticoColetânea MatemáticaConteúdos DigitaisCourseraCPU-UFJFCurrículo +Clube de MatemáticaEducação BaseadaEMEM(UFSCar)E-CálculoMathematical EtudesGeogebra SPGregos e TroianosHorário de VerãoHistória da MatemáticaIMOInterdisciplinaridadeIsto é MatemáticaLaifiMalba TahanLD-Matemática-UFSCMatematecaMatemática-PT Mathway Matemática-FGVMatemática em Toda Parte IIMat/EAD(UFMG)MathematikosMestrado IFSP-SPMestrado USP-SPMídias Digitais-UFRGSMídias na EducaçãoMPEM-USPMoranNiuAlephNTEM (Lante-UFF)Paulo FreirePoliedros(moldes)Poliedros-IFPorvirProficiênciaProfmatProjeto PólyaProf. Jorge Nuno SilvaProf. NicolauProf. Nilson J. MachadoProf. Jacir VenturiProf. Walter TadeuProf. Luiz FreitasProfessor DigitalTIC na MatemáticaREARevista OIMRPM-Revista do Professor de MatemáticaRevista Gazeta de MatemáticaSBEMSBMSobrevivência em CálculoUnesco no Brasil Um livroUsuários do ExcelUnivespVeducaWebcalcWebeduc-MECZéfiroZKWolfram MathWorld

▼ Postagens mais visitadas ★

*O Portal da Matemática OBMEP oferece, gratuitamente, a todos os estudantes do país materiais relacionados à grade curricular do 6º ano do Ensino Fundamental ao 3º ano do Ensino Médio. Complemente e aprofunde seus estudos com videoaulas, exercícios resolvidos, caderno de exercícios, material teórico e aplicativos iterativos. Aproveite!!