Seja bem-vindo(a). Hoje é
►| CEM| A²C | P & D| MATEMÁTICA| AUTORES| CONTATO| JOGOS| *

80

►Vai encarar o ENEM este ano? Inicie os estudos fazendo as provas das edições anteriores. Acesse-as aqui.

►Que tal fazer agora um simulado on-line para o ENEM? Acesse-o aqui (utilize o Chrome preferencialmente).

OBMEP 2017 ... Vamos relembrar a história de 4 jovens que passaram pela OBMEP ? Veja o documentário aqui.

►Conhece o vestibulinho das ETEC's(Escolas Técnicas Estaduais-SP)? Acesse as provas anteriores, cursos e período de inscrição. Mais informações acesse aqui.

►Conheça o SISU - Sistema de Seleção Unificada para o ensino superior / SISUTEC - Sistema de Seleção para a Educação profissional tecnológica do MEC (Ministério da Educação) e saiba como aproveitar a nota do ENEM para ingresso em cursos superiores e técnicos de instituições públicas.

►Conhece o PASUSP? Um importante programa de Avaliação da USP destinado a alunos do 2º e 3º ano do EM da rede pública paulista.


domingo, 30 de agosto de 2015

Vamos falar de semelhança na Geometria Espacial ?


Dois polígonos são semelhantes se for possível estabelecer uma correspondência entre vértices e lados de modo que ângulos de vértices correspondentes sejam congruentes e lados correspondentes sejam proporcionais.


Dessa forma:

k é chamado razão de semelhança.
• Se dois triângulos são semelhantes, a proporcionalidade se mantém constante para quaisquer dois segmentos correspondentes, tais como: lados, alturas, medianas, perímetros, inraios, circunraios, etc.
• É fácil provar que se os polígonos são semelhantes com razão de semelhança k, a razão entre as áreas é .
• Considerando os resultados acima, na geometria espacial, quando temos dois sólidos semelhantes, dizemos que a razão entre os volumes de dois sólidos semelhantes é igual ao cubo da razão de semelhança, isto é, .

Exemplo:
Numa pirâmide com altura de 30 cm e área da base igual a 150 cm². Usando semelhança de sólidos geométricos, podemos determinar a área da secção superior do tronco de pirâmide obtido quando seccionamos paralelamente à base e a 17 cm dela. Veja:

Devido a secção ser paralela ao plano da base (secção transversal), podemos concluir que:

h = 30 – 17 = 13 e desta forma a razão de semelhança entre a pirâmide menor (acima do corte) e o tronco de pirâmide (abaixo do corte) é k = 13/30 ;

  ,  Assim


Logo, a área da secção é aproximadamente igual a 28,2 cm².

Nenhum comentário:

Postar um comentário

►ATENÇÃO - Leia a política para comentários na página de contato.

Observação: somente um membro deste blog pode postar um comentário.

▼ Reflita | Frases e Pensamentos ★

▬▬▬▬▬▬▬▬▬▬ ✽ ▬▬▬▬▬▬▬▬▬▬

""

▬▬▬▬▬▬▬▬▬▬ ✽ ▬▬▬▬▬▬▬▬▬▬
Este blogue está vinculado ao Portal do Professor como uma contribuição e experiência pedagógica diferenciada no ensino de Matemática.