Seja bem-vindo(a). Hoje é
►| CEM| A²C | P & D| MATEMÁTICA| AUTORES| CONTATO| JOGOS| *

80

►Vai encarar o ENEM este ano? Inicie os estudos fazendo as provas das edições anteriores. Acesse-as aqui.

►Que tal fazer agora um simulado on-line para o ENEM? Acesse-o aqui (utilize o Chrome preferencialmente).

OBMEP 2017 ... Vamos relembrar a história de 4 jovens que passaram pela OBMEP ? Veja o documentário aqui.

►Conhece o vestibulinho das ETEC's(Escolas Técnicas Estaduais-SP)? Acesse as provas anteriores, cursos e período de inscrição. Mais informações acesse aqui.

►Conheça o SISU - Sistema de Seleção Unificada para o ensino superior / SISUTEC - Sistema de Seleção para a Educação profissional tecnológica do MEC (Ministério da Educação) e saiba como aproveitar a nota do ENEM para ingresso em cursos superiores e técnicos de instituições públicas.

►Conhece o PASUSP? Um importante programa de Avaliação da USP destinado a alunos do 2º e 3º ano do EM da rede pública paulista.


domingo, 29 de dezembro de 2013

Destreza ou Esperteza?

Certa vez, quando eu tinha 15 anos, um amigo da minha família afirmou que sabia fazer contas mentalmente e com muita rapidez. Para “provar” isso, propôs a seguinte brincadeira:
“Vou escrever um número com sete algarismos. Em seguida, você escreve, abaixo do meu número, outro número com sete algarismos. Repetimos isso mais uma vez, eu escrevo meu terceiro número e, então, eu direi a você, sem fazer cálculos, qual é o valor da soma dos cinco números”. Eu, um tanto desconfiado, aceitei a proposta, ocorrendo o seguinte:

 número escrito por ele: 3 574 186
 número escrito por mim: 1 247 064
 número escrito por ele: 8 752 935
 número escrito por mim: 4 955 231
 número escrito por ele: 5 044 768

Soma fornecida por ele: 23 574 184

Conferi a soma manualmente e constatei que estava correta. Fiquei atônito observando aqueles números por alguns instantes, mas nada consegui concluir. Ele propôs outra conta e novamente acertou o resultado em poucos segundos. Claro que eu sabia (ou desconfiava) que existia algum truque por trás daquilo, mas fiquei por alguns anos sem saber qual era. Vamos agora mostrar que, na realidade, tudo não passa de um pouquinho de álgebra: observe que o segundo e o terceiro números escritos por ele são construídos a partir do anterior, de modo que a soma com o anterior seja igual a 9 999 999. Veja:

  número escrito por mim + 2º  número escrito por ele:
1 247 064 + 8 752 935 = 9 999 999

  número escrito por mim + 3º  número escrito por ele:
4 955 231 + 5 044 768 = 9 999 999

observe agora que, como 9 999 999 = 10 000 000 - 1, a soma total é igual a: primeiro número somado + 2 × (10 000 000 -1) = 20 000 000 - 2, ou seja, 
(3 574 186 + 20 000 000) – 2.

Para efetuar a soma entre parênteses, observando que o número de zeros em 20 000 000 é igual ao número de dígitos do número inicial, basta acrescentar o dígito 2 na frente do número original, o que resulta em 23 574 186. Subtraindo 2, obtemos a soma. Note que, para realizar a última operação, no caso em que o algarismo das unidades do primeiro número é maior do que ou igual a 2, basta subtrair 2 do algarismo das unidades, mantendo os outros dígitos inalterados. Se ele for 0 ou 1, então a subtração é um pouco mais complicada, sendo necessário “emprestar” 1 do algarismo das dezenas para depois subtrair 2. Como 10 - 2 = 8, isso é equivalente a subtrair 1 do algarismo das dezenas e somar 8 ao algarismo das unidades, se esse não for nulo. Se o algarismo das dezenas for nulo, então é preciso emprestar 1 do algarismo das centenas e assim por diante. Observe que, no caso do desafio proposto pelo amigo de minha família, o número inicial é 3 574 186. Colocando 2 no início, obtemos:

23 574 186

Subtraindo 2 do algarismo das unidades, obtemos 23 574 184, que é a soma procurada.
Se alguém o desafiar, você pode tentar dificultar o trabalho para o desafiante dizendo: “Quero ver se você acerta o resultado no caso do primeiro número escrito ter o algarismo das unidades menor que 2, ou seja, igual a 0 ou 1, e o das dezenas nulo”. Isso testará se ele entendeu realmente como funciona o truque, que pode ser adaptado facilmente para o caso de mais dígitos ou para um número maior de somandos. Deixamos para o leitor esse trabalho.
extraído do artigo
Destreza ou esperteza?

de Vanderlei Nemitz, RPM 64, (vide p.56)
Acesse: Revista do Professor de Matemática

Nenhum comentário:

Postar um comentário

►ATENÇÃO - Leia a política para comentários na página de contato.

Observação: somente um membro deste blog pode postar um comentário.

▼ Reflita | Frases e Pensamentos ★

▬▬▬▬▬▬▬▬▬▬ ✽ ▬▬▬▬▬▬▬▬▬▬

""

▬▬▬▬▬▬▬▬▬▬ ✽ ▬▬▬▬▬▬▬▬▬▬
Este blogue está vinculado ao Portal do Professor como uma contribuição e experiência pedagógica diferenciada no ensino de Matemática.