✽ ✽ ✽ Seja bem-vindo(a). Hoje é ✽ ✽ ✽
►| CEM| A²C | P & D| MATEMÁTICA| AUTORES| CONTATO| JOGOS|


★★★

quinta-feira, 30 de julho de 2015

A área do círculo e a imaginação dos matemáticos


O conceito de área de figuras planas cuja superfície a ser medida é limitada por segmentos de reta no ensino fundamental não é algo que estudantes encontram grandes dificuldades. De forma geral os livros que temos exploram bem o assunto. Já no caso de área de figuras planas cujo contorno não é formado por segmentos de reta (como por exemplo, o círculo ou parte dele, entre outras) é um problema. Sinto falta de situações mais adequadas e criativas (inclusive em avaliações oficiais) e acredito que poderia ser melhor explorado ou problematizado. Problemas envolvendo a área do círculo são boas oportunidades de contexto dentro da própria Matemática. Observe a figura a seguir:
No quadrado de lado unitário, qual é a área do olho (região amarela)?

Nesta próxima figura temos um círculo entre dois quadrados. Veja:

O quadrado maior possui área de 36 cm² e menor área de 25 cm². Entre os dois quadrados temos um círculo e isso nos garante que a área do círculo, em destaque, é maior que 25 cm² e menor que 36 cm², más não conseguimos definir exatamente esse valor. E como descobrir? 
Esse é um problema ocupou parte da mente de vários matemáticos gregos; entre eles, podemos citar Eudoxio e Arquimedes. Ambos construíram um método para calcular áreas de figuras planas, que consiste na aproximação por polígonos. A ideia de aproximação não fornece um valor exato, a menos que imaginemos uma seqüência infinita de aproximações. Imaginar o círculo “cortado” em formato de pizza como ilustra a figura abaixo é o começo desse método. Imaginar ainda que esses pedaços possam ser infinitamente menores pode nos fornecer uma expressão que nos dará a área do círculo com base em algo já conhecido. 
Observando as figuras é possível concluirmos que a área do círculo é a mesma área de um retângulo de base πr e altura r, ou seja, A = πr². Como sugestão veja este link: , que ilustra bem o fato. Finalizando, esse povo que faz Matemática tem imaginação e criatividade né? Até o próximo.

Nenhum comentário:

Postar um comentário

►ATENÇÃO - Leia a política para comentários na página de contato.

Observação: somente um membro deste blog pode postar um comentário.

??????????* Vamos jogar o Tangram? Acesse-o aqui.

*O Portal da Matemática OBMEP oferece gratuitamente, a todos os estudantes do país, materiais didáticos de qualidade relacionados à grade curricular do 6º ano do Ensino Fundamental ao 3º ano do Ensino Médio. Já utilizamos e incentivamos nossos estudantes a utilizarem, cada vez mais esses materiais. Complemente e aprofunde seus estudos com videoaulas, exercícios resolvidos, caderno de exercícios, material teórico e aplicativos iterativos. Aproveite!!

?
?
Experimente ► 7 | 6 | 5 | 4 | 3 | 2 | 1 |
?
* Aproveite e conheça nossa história na OBMEP.
?

▼ Reflita | Uma pausa, um pensamento

0

0

▼ Por onde andei(o) enquanto... ♫ | Link's

ABCÁlgebra e GeometriaAMSANPMaTAoPSBases Matemáticas - UFABCBewisseBNCCBoteco EscolaBrainlyCAE - USPCanvas(Designs)Canvas(Instructure)Cálculo com MapleCálculo com G.A. 1Cálculo com G.A. 2Cálculo ICálculo IICálculo(UnivespTV)Cátedra de Educação Básica - USPCDMC - FGVCentro MatemáticoCIEBCIEBPColeção de questões de MatemáticaComitê Gestor da Internet BRConteúdos Digitais-UFFCF/88(Brasília 2018)Clube de MatemáticaCopernicusCourseraCurrículo PaulistaCurrículo +CronômetroCrux MathematicorumDesafios da FísicaEducação BaseadaEditora FiEditora Pimenta CulturalEducação e Tecnologias - UFSCARedXEFAP-SPEIOEditor pixlrEMEM(UFSCar)E-CálculoFazGameFebraceGeogebra SPGoConqrGuia da InternetGregos e TroianosHorário de VerãoHistória da MatemáticaHistória e MatemáticaHistória do ensino da MatemáticaIBGEiea - USPilove PDFIMECCIMOInterdisciplinaridadeIsto é MatemáticaLaifiLearncafeLegislação da SEE-SPLD-Matemática-UFSCMAAMalba TahanManifesto dos PioneirosMatematecaMatemática-PTMathwayMathematical EtudesMathematical Intelligencer, TheMatemática em Toda Parte IIMentalidades MatemáticasMatemática na WikipédiaMat/EAD(UFMG)Mestrado IFSP-SPMestrado USP-SPMídias Digitais-UFRGSMídias na EducaçãoMPEM-USPMoodleMoranNIC.brNIEDNiuAlephNoticiário da SBMNovo Ensino Médio - SPNTEM (Lante-UFF)OCMO futuro das coisasO GeogebraOPMO tamanho do espaçoOutlookPadletPaíses - IBGEPaulo FreirePensando MatematicamentePensamento ComputacionalPhETPISAPlataforma São Paulo - CAEdPoliedros(moldes)População do BrasilPorvirProf. Wilton FilhoProfmatProjeto PólyaProf. Jorge Nuno SilvaProf. NicolauProf. Nilson J. MachadoProf. Jacir VenturiProf. Walter TadeuProf. Luiz FreitasProfessor DigitalQR CodeREMatRevista ParábolaRMURPM-Revista do Professor de MatemáticaRevista Gazeta de MatemáticaRubem Alves - crônicasSARESP em Revista (*) (**)SketchBookSBEMSBMSobrevivência em CálculoSED - SPSmall pdfTIC na MatemáticaTinyURLTerry TaoUdemyUnesco no Brasil Um livro AbertoUsuários do ExcelUnivespVeducaWebcalcWebeduc-MECWolfram MathWorld WordwallyoucubedZéfiro • ...


?

▼ Seções do Blogue | Acesso Rápido ★

»

?


?

★ Caixas & Surpresas ▬▬▬▬▬▬▬

... Experiências e Surpresas Interativas em caixinhas!😉
?
♦♦♦ Acesse e surpreenda-se ! ♦♦♦